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This study explores the interaction of two nearly axisymmetric two-dimensional
vortices using a combination of numerical simulations and analytical arguments. We
consider isolated or ‘shielded’ eddies, characterized by zero net vorticity. The ability of
such vortices to propagate and interact is associated with the small dipolar component
that is introduced initially. Numerical contour dynamics experiments indicate that
the interaction of shielded eddies takes one of two forms, depending on their initial
separation and on the relative orientation of their dipolar components. Eddies can
influence each other by remotely modifying the dipolar moments of partner vortices,
an effect manifested in a gentle deflection of their trajectories from a straight course.
Strong interactions occur when eddies collide and rebound. The remote interaction
is explained by weakly nonlinear theory in which the basic state consists of identical
circularly symmetric eddies and the perturbation is assumed to be small. It is argued
that the elastic rebounds observed during direct collisions are induced by the exchange
of fluid between colliding vortices.

1. Introduction
The abundance of mesoscale eddies in the ocean, combined with their ability to

transport mass, momentum, and energy, makes knowledge of eddy dynamics critical
for understanding their role in ocean mixing. The general conclusions from all kinds
of oceanographic data – see Robinson (1983) and Olson (1991) for a summary of
observational results – is that eddies exist almost everywhere they have been looked
for, though the distribution of eddy activity is spatially heterogeneous. The eddy field
is dynamically active; mid-ocean eddies propagate large distances without loss of
coherence and interact with the mean large-scale circulation and other eddies.

It has long been recognized (Adem 1956; McWilliams & Flierl 1979; Sutyrin &
Flierl 1994) that the motion of intense vortices relative to the background flow
is associated with the presence of a dipolar component, typically masked by the
dominant axisymmetric circulation. In the ocean, this dipolar component can be
produced by the action of the gradient of planetary vorticity (the so-called beta-
effect), which results in the systematic westward drift of vortices (Nof 1981, 1983;
Killworth 1986). However, the observed eddy propagation velocities often differ
considerably, both in amplitude and direction, from that resulting from the beta-effect
(e.g. Chassignet Olson & Boudra 1990). To explain the disagreement, Stern & Radko
(1998) suggested that the dipolar component may also be generated or modified
during the interactions of eddies with topography, other eddies, and currents. It may
be produced, along with other non-axisymmetric perturbations, by the same process
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that generated the eddy. The eddy translation caused by the dipolar component of
non-beta origin was referred to as self-propagation. It was shown (Radko & Stern
1999, 2000) that the initially introduced dipolar component can persist for long times,
dominating the beta-effect and thereby controlling the propagation characteristics.
The presence of the dipolar component in two-dimensional vortices can be reflected
by a small shift of the interior core relative to the vortex exterior. In stratified fluid,
self-propagation can also occur if the upper part of the vortex is displaced relative to
its lower part. Structures of this type are known as hetons (Hogg & Stommel 1985)
and their ability to propagate and interact with other vortices has been established
(Griffiths & Hopfinger 1986).

This study considers self-propagation in the context of the two-dimensional vortex–
vortex interaction problem. We examine the weak, long-range interactions of separated
vortices via the remotely induced velocity fields, as well as strong interactions which
occur when eddies collide and exchange fluid. Both regimes are considered in terms of
the eddy’s ability (or inability) to resist modification of its initial dipolar component.
We explain the dynamics of the vortex–vortex collisions by focusing on the time
evolution of their dipolar moments, and discuss the consequences of strong and weak
interaction effects for the trajectories of self-propagating vortices.

It should be mentioned that historically the vortex–vortex interactions have been
discussed mostly in the framework of the classical merger problem, in which eddies are
represented by finite-area patches of uniform vorticity (Christiansen & Zabusky 1973;
Melander, Zabusky & McWilliams 1988; Dritschel 1986; Griffiths & Hopfinger 1987;
Yasuda & Flierl 1995; among many others). These studies revealed the tendency for
the two eddies to coalesce into a single vortex if their initial separation is sufficiently
small. Motivated by the two-dimensional and quasi-geostrophic turbulence theories
(e.g. McWilliams 1984), the merger models consider eddies with finite net vorticity and
thus with finite far-field circulation. However, a more relevant model of oceanic eddies
is represented by a compact structure in which the rapidly rotating core is surrounded
by a compensating shield of opposite-sign vorticity (Carton 2001). The vanishing
of the far-field circulation can be rationalized by energy considerations (e.g. Stern
1987). The azimuthal velocity induced by an eddy with finite net vorticity is inversely
proportional to the distance from the eddy. Therefore, the kinetic energy associated
with such a vortex is infinite – a significant limitation of the unshielded model in
terms of its ability to represent oceanic eddies. Oceanographic measurements indicate
that the typical velocity distribution of coherent vortices is rather compact and that
the relative vorticity changes sign in the vortex interior (Olson 1980; Olson et al.
1985; Joyce & McDougall 1992; Cornillon & Park 2001). The laboratory experiments
with decaying monopolar vortices also revealed a tendency for the vortices to evolve
towards the shielded configuration (Trieling & van Heijst 1998; Beckers et al. 2001).
It is the focus on the completely shielded eddies that distinguishes our study from the
earlier vortex–vortex interaction models. Because of the absence of the exterior net
circulation, the small initial dipolar moment becomes critical for the eddy translation
and interaction with its partner. Our model is akin to the study of eddy scattering
by a topographic obstacle (Stern 2000), which also emphasizes the role of the dipolar
moment in the evolution of an isolated vortex.

While bringing more insight into the propagation and interaction of the oceanic
eddies is our ultimate goal, it should be noted that the simplicity of our model – most
notably the two-dimensional framework adopted for this study – precludes direct
quantitative comparisons with oceanographic field measurements. A question often
raised is whether the idealized two-dimensional models, interesting as they may be



Interaction and elastic collisions of isolated vortices 287

in their own right, can provide an adequate analogue of vortices in nature. It is our
belief that the proposed model will influence the interpretation of observations in two
critical respects. First, it underscores the fundamental differences in the evolution of
shielded and unshielded eddies, the differences which undoubtedly persist in the three-
dimensional world. In addition, the techniques and ideas that we use here to derive
the explicit analytical solutions are sufficiently general and could be adapted for the
analysis of the interaction of various compact structures, two- or three-dimensional.

With these considerations in mind, we set out our paper as follows. In § 2, we
present preliminary numerical experiments with self-propagating eddies, including an
example of remote interaction. The initial orientation of the eddies is such that they
are able to pass each other without colliding. Still, a small but permanent deflection
of the eddies from their initial course is observed and attributed to the long-range
interaction. To explain its mechanics and magnitude, in § 3 we develop a weakly
nonlinear theory for the amplitude of the eddy dipolar component. The amplitude
equations are then used to predict the vortex trajectories (§ 4). Section 5 addresses
the dynamics of the direct collisions. We note the exchange of fluid between eddies
during their brief encounter and emphasize its dynamical significance. We summarize
the key findings in § 6.

2. Preliminary considerations
2.1. Formulation

Our focus is on two-dimensional shielded eddies characterized by zero net vorticity:∫∫
ς dx dy = 0. (1)

The integration in (1) is carried over a finite area (S); ς = ∇2ψ is the vorticity, which
vanishes outside the vortex, and ψ is the streamfunction. A simple model of such
structures is given by a point anticyclonic vortex surrounded by a patch of uniform
vorticity as shown in the schematic diagram in figure 1(a). The two-dimensional flow
of an inviscid incompressible fluid is governed by the vorticity equation:

∂ς

∂t
+ J (ψ, ς) = 0, (2)

which we cast in non-dimensional form by setting the distributed vorticity to unity
and its area to π; the time variable t is non-dimensionalized accordingly: t = tdimςdim.
In view of (1), the non-dimensional vorticity of the point vortex located at (X0, Y0)
becomes

ς = −πδ(x − X0)δ(y − X0), (3)

where δ is the Dirac delta function.†
Motivated by observations of oceanic rings, we consider nearly axisymmetric

or ‘quasi-monopolar’ (Stern & Radko 1998) vortices. The boundary of distributed
vorticity (∂S) is only slightly perturbed relative to a unit circle, and the point vortex

† While the singular distribution of vorticity represents an extreme idealization, it should be
mentioned that we performed a series of numerical calculations (not shown) in which a point vortex
was replaced by a distributed inner core of uniform vorticity, with no circulation outside the eddy.
Since the outcome of those experiments was qualitatively similar to that with singular interior
vorticity, our paper will address only the more tractable singular case.
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Figure 1. Schematic of the vorticity configurations used in our model: (a) One of the shielded
eddies consisting of an anticyclonic point vortex (O) surrounded by a patch of uniform cyclonic
vorticity. The contour of distributed vorticity (∂S) is only slightly perturbed relative to a circle
(dashed) centred at C. (b) Two interacting eddies that are symmetric with respect to the origin
of the coordinate system; O and O∗ are their point vortices.

is only slightly away from its centre. The weak asymmetry is, however, dynamically
significant – it causes the vortex to drift, slowly but steadily, away from its origin.
The quasi-monopolar vortex in figure 1(a) can be viewed as a superposition of the
strong circularly symmetric circulation (also known as a ‘rider’) and a weak dipole.
Propelled by the dipolar component, partially masked by the rider, the vortex as a
whole moves with the speed

U ≈ ε

2
, (4)

where ε is the distance between the centroid of distributed vorticity C, marked by
the plus sign in figure 1(a), and the point vortex O (marked by the filled circle). The
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direction of motion is perpendicular to the displacement between the centroid and
point vortex (e.g. Stern & Radko 1998).

An interesting feature of quasi-monopolar vortices is related to their ability to
maintain speed and direction for long periods of time, resulting in propagation over
distances greatly exceeding their size. The persistent character of self-propagation
can be rationalized (Stern & Radko 1998) using the well-known (e.g. Saffman 1992)
principle of impulse conservation, which states that, in the absence of external forcing,
the dipolar moments of eddy vorticity (Qx, Qy) are conserved:

dQx

dt
= 0, Qx =

∫∫
xζdx dy;

dQy

dt
= 0, Qy =

∫∫
yζdx dy.

⎫⎪⎪⎬
⎪⎪⎭ (5)

For the configuration in figure 1(a), the expression for the eddy dipolar moment
simplifies (Stern & Radko 1998) to

(Qx, Qy) = π(XC − X0, YC − Y0) (6)

where

(XC, YC) =

(
1

S

∫∫
S

x dx dy,
1

S

∫∫
S

y dx dy

)
are the coordinates of the centroid of the distributed vorticity patch. Equation (6)
reduces to a requirement that the separation between the point vortex (X0, Y0) and
(XC, YC) does not vary in time:

d

dt
(XC − X0) = 0,

d

dt
(YC − Y0) = 0, (7)

which, in turn, implies the invariance of the propagation velocity (4).
The dipolar moment can be related to the shape of the vorticity contour as follows.

First, we adopt a polar coordinate system in which the origin is set at the point vortex
O , and the polar axis is oriented in the x-direction (see figure 1a). In this system,
the contour is described by the radius–angle relation r = R(θ), and the separation
between the centroid and the point vortex becomes

XC − X0 =
1

π

∫∫
S

(x − X0) dx dy =
1

π

∫ 2π

0

dθ

∫ R(θ)

0

r2 cos θ dr,

YC − Y0 =
1

π

∫∫
S

(y − Y0) dx dy =
1

π

∫ 2π

0

dθ

∫ R(θ)

0

r2 sin θ dr.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8)

Next, we represent the nearly circular vorticity contour in figure 1(a) in terms of its
Fourier components:

R(θ) = 1 +

∞∑
m=1

Am cos(mθ) + Bm sin(mθ), (9)

where the coefficients Am, Bm are assumed to be small. When (9) is substituted in (8)
and the result is linearized for |Am|, |Bm| � 1, we arrive at

XC − X0 = A1, YC − Y0 = B1. (10)
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Equations (10) and (6) imply that the eddy dipolar moment is proportional to the
first azimuthal Fourier harmonic of the displacement of the vorticity contour relative
to the point vortex.

While the conservation of the eddy dipolar moment – hence conservation of its
velocity and its azimuthal m =1 harmonic – controls the propagation of a single
isolated vortex, the possibility exists that the dipolar moment could be substantially
modified in the presence of another distant vortex. To examine the strength and
typical patterns of interaction of two self-propagating vortices, their evolution is first
simulated numerically. We use the contour dynamics method (Zabusky, Hughes &
Roberts 1979; Stern & Pratt 1985) which makes it possible to compute the time
evolution of the boundaries of uniform vorticity patches. The numerical code is similar
to that in Stern & Radko (1998), but here it is applied to the two-vortex configuration
shown schematically in figure 1(b). Each eddy is still represented by an anticyclonic
point vortex surrounded by a compensating patch of uniform cyclonic vorticity. The
notation adopted for the first vortex (figure 1b) is the same as in figure 1(a); the
corresponding quantities for the second vortex are marked by asterisks. To reduce
the number of controlling parameters, we focus here on the configurations that
are symmetric which respect to the origin of the coordinate system. However, our
preliminary experiments with asymmetric vortices (Appendix A) suggest that their
evolutionary patterns are qualitatively similar.

2.2. Remote interaction of isolated vortices

The experiment in figure 2 was initialized by two vorticity contours consisting of
unit circles, each represented by N = 500 equally spaced Lagrangian points and the
compensating point vortices which were placed at

(X0, Y0) = (3, 1), (X∗
0, Y

∗
0 ) = (−3, −1). (11)

The centres of the vorticity contours were slightly displaced with respect to (11) as
follows:

XC = X0, YC = Y0 − 0.05,

X∗
C = X∗

0, Y ∗
C = Y ∗

0 + 0.05.

}
(12)

As discussed earlier – see (4) – this small y-displacement introduces a dipolar moment
which propels vortices in the x-direction. The initial configuration in (11) and (12) is
such that the vortices are able to pass each other without collision, which we refer to
as the weak interaction regime.

The first stage of the numerical experiment (figure 2a) represents the rectilinear
motion of vortices – so far, the vortices exert only a slight influence on their partners
and the trajectories are almost straight. This pattern of motion, however, changes
when eddies come into close proximity (figure 2b, c). Their trajectories become visibly
deflected: first, the eddies make a gentle right turn (figure 2b) and then, after passing
their partner, turn left (figure 2c). The vortices do not recover their initial orientation,
and the net effect of their weak encounter is to produce a finite y-velocity component –
the component which was absent initially. As a result, the vortices scatter at a finite
angle relative to their original direction of motion. The change in propagation velocity
also implies that the eddy dipolar moment has also been permanently modified.

The strength of the remote interaction of isolated vortices can be roughly estimated
by the following scaling analysis. The far-field advection induced by a circular patch
of unit vorticity with area π is represented by a streamfunction:

ψC = 1
4
ln((x − XC)2 + (y − YC)2), (13)
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Figure 2. Numerical experiment with non-colliding vortices. The regions of distributed
vorticity are shown in red and yellow, and the blue curves represent trajectories of the
point vortices. Note the small but permanent change in the direction of motion caused by the
remote interaction of eddies.

and the streamfunction of the point vortex is

ψ0 = − 1
4
ln((x − X0)

2 + (y − Y0)
2). (14)

The sum of (13) and (14) reduces, for |X0 − XC |, |Y0 − YC | ∼ ε � 1, to

ψ ≈ 1

2

(x − XC)(X0 − XC) + (y − YC)(Y0 − YC)

(x − XC)2 + (y − YC)2
. (15)

Thus, the velocity induced by the vortex on its partner is relatively weak:

ψ ∼ ε

l
; (u, v) =

(
−∂ψ

∂y
,
∂ψ

∂x

)
∼ ε

l2
, (16)

where l is the distance between the two vortices. This velocity is also non-uniform.
For instance, the difference between the velocity of the second point vortex (O∗) and
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the velocity of particles located at the centroid of the second vortex (C∗) is

	u = u∗
C − u∗

0 ≈ ∇u·(X∗
C − X∗

0, Y
∗
C − Y ∗

0 ) ∼ ε2

l3
,

	v = v∗
C − v∗

0 ≈ ∇v·(X∗
C − X∗

0, Y
∗
C − Y ∗

0 ) ∼ ε2

l3
.

⎫⎪⎪⎬
⎪⎪⎭ (17)

This non-uniformity of the induced velocity field implies that the eddy dipolar
moment – the eddy’s ‘engine’ responsible for its propagation – can change in time at
the rate of

∂

∂t
(X∗

C − X∗
0) ∼ ∂

∂t
(Y ∗

C − Y ∗
0 ) ∼ ε2

l3
. (18)

Since the dipolar moment of quasi-monopolar vortices is small (ε � 1), whereas
the separation between the eddies should at least exceed their diameter (l > 2), the
estimate in (18) explains why the interaction of vortices in figure 2 is rather weak and
why significant effects occur only when vortices are close to each other.

Of course, the foregoing crude estimate oversimplifies the dynamics of interaction.
Vorticity contours are not exactly circular and, more importantly, the velocity of the
centroid may differ considerably from the Lagrangian particle velocities at the same
location. Nevertheless, the subsequent formal asymptotic analysis (§ 3) confirms the
anticipated scaling in (18).

2.3. Head-on collision of self-propagating vortices

Figure 3 presents an example of the direct collision of self-propagating eddies. The
point vortices were placed at

(X0, Y0) = (3, 0), (X∗
0, Y

∗
0 ) = (−3, 0) (19)

and the displacement of the distributed vorticity centres was the same as in our
previous experiment (12). This configuration corresponds to the motion of eddies
along the x-axis directly towards each other. Figure 3(a, b) reveals that initially
eddies move in a remarkably straight path. The magnitude of propagation velocity
is also almost uniform in time. As vortices approach their partner they tend to
accelerate slightly until their head-on collision (figure 3c). It should be noted that the
collision involves a considerable exchange of fluid: part of the first vortex (yellow
patch in figure 3c) leaks into the second vortex (red patch) and vice versa. After the
collision, vortices rebound, rapidly reversing their course (figure 3d), and then steadily
drift away from each other. A thin vorticity filament connecting the two vortices in
figure 3(d) is the only reminder of their violent encounter.

The observed rebound is almost elastic in the sense that the vortex speed before
the collision is close to its speed after. It is only the direction of motion that changes
dramatically. Reversal of the course implies that the eddy dipolar moment has also
been reversed. Consider, say, the yellow eddy in figure 3. Before the collision, the
eddy centroid was located below the point vortex – ‘below’ refers here to the negative
y-direction – and the eddy drifted in the negative x-direction. After collision, the eddy
started to translate in the positive x-direction, which implies that the centroid has
moved above the point vortex. This displacement of the centroid relative to the point
vortex can be readily attributed to the exchange of fluid between the two eddies.
During the encounter, the first eddy loses some fluid in its lower (negative-y) part,
which is compensated by the entrainment of fluid from the second vortex into its
upper part. Such an exchange, clearly visible in figure 3(c), effectively displaces the
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Figure 3. The same as in figure 2 but for colliding vortices. Note the substantial exchange of
fluid between eddies during the collision.

centroid of distributed vorticity in the positive y-direction, thereby reversing the eddy
dipolar moment and, eventually, its direction of motion.

In the following section, we quantify and extend our physical interpretation of
eddy–eddy interactions by developing a formal asymptotic theory in which ε – the
measure of eddy dipolar moment – is small.

3. Weakly nonlinear theory for the vortex–vortex interaction
Motivated by the numerical simulations in § 2, we attempt to describe the dynamics

of the interacting eddies analytically, by predicting the evolution of their dipolar
moments. Without loss of generality, we temporarily adopt the coordinate system
shown schematically in figure 4, in which the first point vortex (O) is located at the
origin (i.e. (X0, Y0) = (0, 0)) and the second point vortex (O∗) is located on the x-axis
((X∗

0, Y
∗
0 ) = (−l, 0)). This coordinate system is stationary in the sense that it does not

follow the moving vortex – vortices are aligned along the x-axis only at given instant
of time.
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Figure 4. The coordinate system used in formulating the weakly nonlinear model. Its origin
is placed at the instantaneous location of the first point vortex (O) and the x-axis is oriented
along the line (O∗,O) connecting the point vortices. (ξ, η) represent the Cartesian coordinates
of the points located on the vorticity contour of the first eddy; (ξ ∗, η∗) are the coordinates of
the second.

3.1. Governing equations

The first vorticity contour (ξ, η) can be described in polar coordinates (r, θ) such that:

r = R(θ) =
√

ξ 2 + η2, cos θ =
ξ

r
, sin θ =

η

r
, (20)

and the second vorticity contour (ξ ∗, η∗) can be represented similarly (see the schematic
in figure 4):

r = R∗(θ) =
√

(ξ ∗ + l)2 + (η∗)2, cos θ =
ξ ∗ + l

r
, sin θ =

η

r
. (21)

Since we restricted our discussion to configurations in which two eddies are perfectly
symmetric with respect to each other, we write this condition in polar coordinates as
follows

R∗(θ) = R(θ + π). (22)

If satisfied initially, (22) holds at all times.
The evolution of the contour r = R(θ) in time is computed as follows. Let n denote

the outward unit vector normal to the interface and V (θ) = (U, V ) is the velocity
of particles at the boundary of the distributed vorticity patch relative to the point
vortex. Since this boundary represents a material surface – particles initially located
at this surface remain there forever – its advancement in the direction normal to the
interface is exactly equal to the n-projection of particle velocities:(

d(x − X0)

dt
,
d(y − Y0)

dt

)
· n = V · n. (23)
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Returning to the polar coordinate system, we write the kinematic boundary condition
(23) in terms of the evolutionary equation for R:

∂R

∂t

∣∣∣∣
θ

=
V · n

nx cos θ + ny sin θ
. (24)

The normal n in (24) can be readily computed from an expression for the vorticity
contour r =R(θ) and the assumed symmetry condition (22) spares us from considering
the evolution of the second contour, which simplifies the analysis.

Next, V in (24) is written as the difference between the velocity of particles located
at the contour (V C) and the velocity of the point vortex (V 0):

V = V C − V 0. (25)

V C and V 0, in turn, can be separated into the distinct dynamic components:

V C = V CC + V 0C + V ∗
CC + V ∗

0C, (26)

where V CC , V 0C , V ∗
CC , and V ∗

0C represent the advection of the contour induced by the
first distributed vortex, first point vortex, second distributed vortex, and the second
point vortex respectively; and

V 0 = V C0 + V ∗
C0 + V ∗

00, (27)

where V C0, V ∗
C0, and V ∗

00 represent the advection of the first point vortex by the first
distributed vortex, second distributed vortex, and second point vortex respectively.

The influence of distributed vortices can be described by the well-known (Zabusky
et al. 1979) contour dynamics equations

u = − ς

4π

∮
dξ ln((x − ξ )2 + (y − η)2),

v = − ς

4π

∮
dη ln((x − ξ )2 + (y − η)2),

⎫⎪⎪⎬
⎪⎪⎭ (28)

which express the velocity (u, v) induced at a point (x, y) by a patch of uniform
vorticity (ς = 1 in our case) as the line integral along its boundary (ξ, η). Applying
these equations to the first distributed vortex and returning to the polar coordinate
system, we express V CC = (UCC, VCC) in (26) as follows:

UCC = − 1

4π

∫ 2π

0

ln([R(θ) cos θ − R(ϕ) cos ϕ]2

+ [R(θ) sin θ − R(ϕ) sin ϕ]2)
d[R(ϕ) cos ϕ]

dϕ
dϕ,

VCC = − 1

4π

∫ 2π

0

ln([R(θ) cos θ − R(ϕ) cos ϕ]2

+ [R(θ) sin θ − R(ϕ) sin ϕ]2)
d[R(ϕ) sin ϕ]

dϕ
dϕ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(29)

and analogous integral expressions are obtained for V ∗
CC = (U ∗

CC, V ∗
CC), V C0 =

(UC0, VC0), and V C0 = (UC0, VC0).
Point vortices with circulation − π produce axisymmetric streamfunctions ψ0 =

− 1
4
ln(x2+y2) and ψ∗

0 = − 1
4
ln((x+l)2+y2), and the corresponding velocity components
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advecting the first and second contours are

U0C =
1

2

R sin θ

(R cos θ)2 + (R sin θ)2
, V0C = −1

2

R cos θ

(R cos θ)2 + (R sin θ)2
,

U ∗
0C =

1

2

R sin θ

(R cos θ + l)2 + (R sin θ)2
, V ∗

0C = −1

2

R cos θ + l

(R cos θ + l)2 + (R sin θ)2
.

⎫⎪⎪⎬
⎪⎪⎭ (30)

Finally, advection of the first point vortex by the second one is just (U ∗
00, V

∗
00) =

(0, −1/2l).

3.2. Asymptotic expansion

The solution of governing equations (24)–(30) proceeds by way of asymptotic
expansions. To describe the interaction of two almost circular vortices analytically,
we construct the power series

R(θ) = 1 + ε	R1(θ) + ε2	R2(θ) + O(ε3)

R∗(θ) = 1 + ε	R∗
1(θ) + ε2	R∗

2(θ) + O(ε3),

}
(31)

where ε is a small parameter measuring the displacement of the point vortex relative to
the centroid of distributed vorticity. Based on the scaling arguments in § 2 – see (18) –
we expect the vortex–vortex interaction to affect their propagation characteristics on
a relatively slow time scale ∼ε−1, and therefore the time variable is rescaled as

t = ε−1t0. (32)

On this time scale, our evolutionary equation (24) becomes

ε
∂R

∂t0
=

V · n
nx cos θ + ny sin θ

. (33)

Our goal is to predict the evolution of the m =1 azimuthal mode, primarily responsible
for the propagation of isolated eddies. Therefore, at first one might be tempted
to search for a solution whose first-order component consists entirely of the first
harmonic. However, in the two-vortex configuration, such a solution cannot be valid
over long (order ε−1) time scales: as we demonstrate in Appendix B, vortex–vortex
interaction causes a linear response to the m =1 mode in terms of the m =2 harmonic
which develops at the fast (	t ∼ 1) time scale. Therefore, at this order, we also include
the m =2 mode whose amplitude is such that a balanced solution, evolving on the
slow time scale, could be found:

	R1 = A11 cos θ + B11 sin θ + A12 cos(2θ) + B12 sin(2θ). (34)

In view of the symmetry relation (22), the first-order structure of the second contour
is given by

	R∗
1 = − A11 cos θ − B11 sin θ + A12 cos(2θ) + B12 sin(2θ). (35)

The nonlinear interaction of terms in (34) and (35) is expected to produce the
azimuthal harmonics 0–4, and thus we further expand our solution to the next
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(O(ε2)) order as follows:

R(θ) = 1 + ε

[
2∑

m=1

(A1m cos(mθ) + B1m sin(mθ))

]

+ ε2

[
C +

4∑
m=1

(A2m cos(mθ) + B2m sin(mθ))

]
+ O(ε3),

R∗(θ) = 1 + ε

[
2∑

m=1

(−1)m(A1m cos(mθ) + B1m sin(mθ))

]

+ ε2

[
C +

4∑
m=1

(−1)m(A2m cos(mθ) + B2m sin(mθ))

]
+ O(ε3).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(36)

3.3. The amplitude equation

The following is an outline of the derivation of the closed system of amplitude
equations for the m = 1 mode (A11(t0) and B11(t0) terms). First, the power series
(36) are substituted in the expressions for the individual velocity components
(V CC, V 0C, V ∗

CC, V ∗
0C, V C0, V ∗

C0, V ∗
00), which are then combined using (25)–(27) and

substituted in the evolutionary equation (33). Next, we collect the terms of the
same order in ε. The zero-order terms represent our basic state – a trivial steady
configuration consisting of two non-interacting axisymmetric vortices. Combining the
linear (order-ε) terms, we express the m =2 components A12 and B12 in terms of
(A11, B11). At O(ε2), it is possible to eliminate the second-order quantities (A2m, B2m)
in favour of the first-order terms and thereby derive a solvability condition for the
slow evolution of the m = 1 mode.

The procedure summarized above involves extensive, although fairly straight-
forward, algebra and therefore many details are omitted. It is perhaps worth
mentioning a few standard methods used to compute the contour dynamics integrals
(e.g. (29)). (i) Integrals involving the logarithm of periodic functions were simplified
by integrating by parts∫ 2π

0

ln(G(ϕ))f (ϕ) Pdϕ = −
∫ 2π

0

G′(ϕ)

G(ϕ)
F (ϕ) dϕ,

where F (ϕ) =
∫

f (ϕ) dϕ. (ii) To integrate a combination of trigonometric functions
over the interval 0 <ϕ < 2π, we apply the variable change z = exp(iϕ), which
transforms the integration path to the unit circle in the complex plane. Those
integrals are evaluated using the residue theorem

∫
g(z) dz = 2πi

∑
Res(ak), where

ak are the poles of g(z). (iii) Finally, at each order in ε, we simplify the formulation
by considering the long-range limit l → ∞. Since our estimates in § 2 indicate that the
strength of the vortex–vortex interaction is ∼l−3, we expand our balanced equations
in powers of l−1, truncating the expansion at the third order.

In particular, the O(ε) velocity components (equations (25)–(27)) represent the
following linear combination of the first-order terms (A1i , B1i):

U01 =
1

2l3
(−B11l + B12 + B11l

3), V01 = − 1

2l3
(A11l − A12 + A11l

3) . (37)

Here, (U01, V01) denote the first-order terms in the ε-expansion of the velocity of the
point vortex:

U0 = U01ε + U02ε
2 + O(ε3), V0 = V01ε + V02ε

2 + O(ε3). (38)



298 T. Radko

For the vorticity contours, we obtain

U1 =
1

2l3
(B11 cos(2θ)l3 − A12 sin(3θ)l3 + B12 cos(3θ)l3 − A11 sin(2θ)l3

− B11l
3 + 2B11 cos(θ) + 2A11 sin(θ)),

V1 =
1

2l3
(−2B11 sin(θ) + 2A11 cos(θ) + A11 cos(2θ)l3 + B11 sin(2θ)l3

+ B12 sin(3θ)l3 + A11l
3 + A12 cos(3θ)l3),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(39)

where (U1, V1) denote the first-order terms in the ε-expansion of the velocity of the
interface relative to the point vortex:

U = U1ε + U2ε
2 + O(ε3), V = V1ε + V2ε

2 + O(ε3). (40)

When (39) and (40) are substituted in the evolutionary equation (33), we obtain the
following order-ε balance:

− 1
2
A12l

3 sin(2θ) + 1
2
B12l

3 cos(2θ) + B11 cos(2θ) + A11 sin(2θ) = 0. (41)

We emphasize that the linear balance (41) does not contain time derivatives which,
in view of (32), enter at the next order. Equation (41) also does not contain the m = 1
terms. As one could have expected from the scaling analysis in § 2, development of
the dipolar moment via vortex–vortex interaction is indeed a fundamentally nonlinear
process. Isolating the terms proportional to sin(2θ) and cos(2θ) in (41), we determine
the O(ε) components of the m = 2 harmonic:

A12 =
2A11

l3
, B12 = −2B11

l3
, (42)

which implies that the m =2 mode is much weaker than the m =1 mode and has
only an O(l−6) effect on the point vortex velocity (37). Neglecting the corresponding
O(l−6) terms in (37) reduces it to

U01 =
−B11 + B11l

2

2l2
, V01 = −A11 + A11l

2

2l2
. (43)

The O(ε2) balances yield the following second-order velocity components:

U2 =
1

8

(
4A2

11 sin θ + 4B2
11 sin θ + A2

11 sin(3θ) − B2
11 sin(3θ) − 2B11A11 cos(3θ)

)
+

1

8L3

(
− 4B11A11 + 2 sin(4θ)A2

11 + 4A2
11 sin(2θ)

+ 2B2
11 sin(4θ) + 4B11A11 cos(2θ)

)
+ LU (	R2),

V2 =
1

8

(
−4B2

11 cos θ + B2
11 cos(3θ) − A2

11 cos(3θ) − 4A2
11 cos θ − 2B11A11 sin(3θ)

)
+

1

8L3

(
8B11A11 sin(2θ) − 4A2

11 + 4B2
11 − 4B2

11 cos(4θ) − 4A2
11 cos(4θ)

+ 8B2
11 cos(2θ)

)
+ LV (	R2),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(44)

where LU and LV are the linear operators in the velocity equations (written explicitly
in (B4), (B5)) acting here on the second-order terms in the expansion of R.
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Substituing (44) and (40) in the evolutionary equation (33), we arrive at the following
order-ε2 balance:

∂A11

∂t0
cos θ +

∂B11

∂t0
sin θ +

∂A12

∂t0
cos(2θ) +

∂B12

∂t0
sin(2θ)

=
1

8l3

(
32A2

11 sin(3θ) + 32B2
11 sin(3θ) + 16A11B11 cos θ − 10A11B11l

3 cos(2θ)

− 5B2
11 sin(2θ) − 8B2

11 sin θ + 8A2
11 sin θ + 5A2

11l
3 sin(2θ)

)
+ LR(	R2), (45)

where LR =LU cos θ +LV sin θ (as previously, we consider the long-range l → ∞ limit
and discard the o(l−3) terms). Since the linear operator LR does not produce the m =1
harmonic (see (41) or (B6) in Appendix B), we obtain a closed system of equations
for the first-order quantities simply by isolating terms proportional to sin θ and cos θ

in (45):

∂A11

∂t0
=

2A11B11

l3
,

∂B11

∂t0
=

A2
11 − B2

11

l3
. (46)

These are the amplitude equations sought for the dipolar moment. As expected (see
(18)), they are characterized by quadratic nonlinearity and the strength of vortex–
vortex interaction is inversely proportional to third power of the separation between
vortices. When written in terms of un-rescaled quantities (A= εA11, B = εB11, and
t = ε−1t0), the amplitude equations become

∂A

∂t
=

2AB

l3
,

∂B

∂t
=

A2 − B2

l3
. (47)

4. Trajectories of interacting vortices
In this section, the amplitude equations (47) are used to predict trajectories of

interacting vortices. Since we are now concerned with the finite displacements of
vortices, we can no longer use a coordinate system where vortices are located on the
x-axis. Therefore, we return to the coordinate system in figure 1(b); this transformation
is executed by replacing the variables in (43) and (47) as follows:

A → A cos γ + B sin γ, B → −A sin γ + B cos γ,

U0 → U0 cos γ + V0 sin γ, U0 → −U0 sin γ + V0 cos γ,

}
(48)

where γ is the inclination of the line (O∗, O) connecting the point vortices relative to
the x-axis.

The amplitude equations become:

∂A

∂t
=

B2 sin(3γ ) − A2 sin(3γ ) + 2AB cos(3γ )

l3
,

∂B

∂t
=

2AB sin(3γ ) − B2 cos(3γ ) + A2 cos(3γ )

l3
,

⎫⎪⎬
⎪⎭ (49)

and the velocity of the point vortex (43) becomes:

U0 =
A sin(2γ ) − B cos(2γ ) + Bl2

2l2
,

V0 = −B sin(2γ ) + A cos(2γ ) + Al2

2l2
.

⎫⎪⎬
⎪⎭ (50)
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Note that (50) represents the leading-order components of the propagation velocity,
and the relative error of this approximation, due to the neglect of higher-order terms
in the ε-expansion, is O(ε).

Next, we denote the Cartesian coordinates of the first point vortex by X0(t) and

Y0(t); the coordinates of the second become (X∗
0, Y

∗
0 ) = (−X0, −Y0), l = 2

√
X2

0 + Y 2
0 ,

and

X0 =
l

2
cos γ, Y0 =

l

2
sin γ. (51)

Combining (49)–(51), we arrive at a closed system of ordinary differential equations:

∂A

∂t
=

B2 sin(3γ ) − A2 sin(3γ ) + 2AB cos(3γ )

l3
,

∂B

∂t
=

2AB sin(3γ ) − B2 cos(3γ ) + A2 cos(3γ )

l3
,

∂X0

∂t
=

A sin(2γ ) − B cos(2γ ) + Bl2

2l2
,

∂Y0

∂t
= −B sin(2γ ) + A cos(2γ ) + Al2

2l2
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

l = 2

√
X2

0 + Y 2
0 , γ = arg(X0 + iY0),

(52)
which can be solved for any given initial conditions for (X0, Y0, A, B). However,
before presenting specific solutions, we note that the system (52) is invariant under
the transformation

(X, Y ) → (X, Y ),
(A, B) → M−1

0 (A, B),
t → M0t,

⎫⎬
⎭ (53)

where M0 is an arbitrary constant. Choosing M0 =
√

A(0)2 + B(0)2, we can, without
loss of generality, consider only the reference case with unit initial amplitude of the

m =1 mode (
√

A(0)2 + B(0)2) and just examine various initial orientations of vortices.
As (53) indicates, variation of the initial amplitude of the dipolar component does
not affect the trajectory, and the propagation time can be recovered by dividing t in
the reference experiment by M0. Also without loss of generality, we assume that the
eddy dipolar component is initially oriented in the y-direction, i.e. A(0) = 0. Thus,
the parameter space of initial conditions is effectively described by just two variables
[X0(0), Y0(0)] representing the initial location of the first vortex.

Figure 5 presents a set of trajectories computed with X0(0) = 3 and various values
of Y0(0). Calculations were terminated when the separation between the vortices
reduced to l = 2, as it was assumed that at that moment vortices collided. Trajectories
in figure 5 reflect the major features of the fully nonlinear numerical experiments
(§ 2). If the initial offset in y between eddies is small, |Y0| < 0.87, the eddies collide
as in figure 3. However if |Y0| > 0.87, vortices are able to pass each other and their
pattern of motion is similar to that in figure 2. At first, eddies are largely unaffected
by their partners: propelled by the initially introduced dipolar moment, they move
in a straight path. As eddies come closer, they deflect from their initial course, first
slightly away from the x-axis – to avoid the approaching partner – and then towards
the x-axis. Overall, the remote interaction of eddies results in a small but permanent
change in their direction of motion.

Figure 6 presents a comparison of the asymptotic theory and numerical simulations.
In figure 6(a, b), we superimpose the records of X0(t) and Y0(t) from the contour
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Figure 5. Trajectories predicted by the theoretical model for one of the interacting eddies.
Note the small but permanent change in the direction of motion.
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Figure 6. Comparison of the numerical calculation with the asymptotic theory: (a)
x-coordinate of the point vortex O as a function of time from the numerical experiment
in figure 2 (solid curve) and from the theoretical model (dashed curve); (b) y-coordinate for
the same experiment; (c) the error of the asymptotic theory, relative to the contour dynamics
experiment, as a function of ε.
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dynamical experiment in figure 2 (solid curve) with the corresponding theoretical
prediction (dashed curve). To be consistent with the long-range (l � 1) assumption
of the asymptotic model, we present an early stage of the experiment (0 < t < 50)
when eddies are still significantly separated from each other. The general agreement
between the numerics and theory supports the proposed weakly nonlinear model of
the remote eddy–eddy interaction. A more quantitative test of the asymptotic theory
is presented in figure 6(c). We performed a series of contour dynamical experiments
with ε = 0.025, 0.05, 0.1, and 0.2, whereas other parameters were the same as in
figure 2. In each experiment, we recorded the separation distance of the point vortex
from its origin for one rescaled unit of time (t0 = 1), which corresponds to t = ε−1.
The difference between the numerical and theoretical separation (Err) is plotted as a
function of ε in logarithmic coordinates. As expected, the relative error in figure 6(c)
is proportional to ε.

5. Elastic collisions of isolated eddies
In this section, we explore dynamics of the direct vortex–vortex collisions, such as

shown in figure 3. After brief collisions, eddies rebound and move away, dramatically
changing their direction of motion and thus their dipolar moments. How is this
possible? Our theoretical considerations (figure 5), as well as experiments with non-
colliding eddies (figure 2) indicate that the dipolar moment is a fairly robust quantity
and cannot be easily modified, much less reversed. Even when eddies just nearly miss
each other, the variation in their dipolar moment does not exceed 15 %.

We believe that a fundamental distinction between the dynamics of colliding and
nearly colliding cases is related to the exchange of fluid between vortices during their
direct contact. It was proposed in § 2 that such an exchange provides an efficient
mechanism for modification of the eddy dipolar moment. As illustrated in figure 3(c),
entrainment of fluid on one side of the vortex from its partner, combined with the
equivalent loss of fluid at the opposite side, effectively displaces the centroid by an
amount (	) proportional to the area (Sex) of the entrained fluid. This displacement
modifies the separation between the centroid and the point vortex which is, in turn,
proportional to the propagation velocity. The proposed scenario leads us to a simple
testable prediction of the magnitude of fluid exchange necessary for the vortex–vortex
rebound:

Sex ∝ 	 =
√

	2
x + 	2

y ∝
√

(uf − ui)2 + (vf − vi)2. (54)

The subscript i (f ) of the velocity components in (54) refers to the time period before
(after) the collision.

To test our rebound model, we performed a series of experiments in which
we systematically varied the initial y-offset of the vortices (Y0(0)), while keeping
other parameters fixed. Figure 7 presents examples of the vorticity patterns realized
immediately after the rebound. For each experiment, we recorded the amount of fluid
exchanged during the collision (Sex), as well as the change in the eddy propagation
velocity (|δV |). Overall, the numerical Sex(|δV |) dependence (figure 8) is consistent with
the predicted linear relation (54), which supports our view of the inviscid rebound as
a consequence of fluid exchange between colliding vortices. We note a small uniform
offset in Sex(δV ) for low values of |δV |, which we attribute to the remote interaction
effects: even for non-colliding eddies (Sex =0) there is a small change in velocity
(δV = 0).
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Figure 7. Examples of colliding eddies. In the numerical experiments we used XC(0) =
X0(0) = 2, YC(0) =Y0(0) − 0.1, and various values of Y0(0). Presented are the vorticity patterns
immediately after the rebound.
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Figure 8. For each experiment with colliding eddies, we plot the amount of fluid exchanged
during the collision (Sex ) as a function of the variation in eddy propagation velocity (|δV |).
The data points (plus signs) conform to the predicted linear relation (54). The best fit of the
data and theory (dashed line) suggests Sex ≈ 9|δV |.
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Before completing the discussion of two isolated vortices, we wish to emphasize two
very pronounced characteristics of eddy–eddy collisions, evident in all our simulations
(figure 7): (i) collisions are largely elastic – they do not lead to significant changes
in the absolute value of the propagation velocity, and (ii) the angle of incidence of
colliding vortices, relative to the line connecting the vortex centres at the moment of
collision, is close to the angle of reflection. While the first effect can be rationalized
by the principle of energy conservation†, the second one, symmetric refraction of
eddies, requires a more elaborate explanation. Our interpretation is based on the
conservation of angular momentum principle (e.g. Saffman 1992) – a global invariant
of the two-dimensional inviscid motion:

d

dt

∫∫
1

2
(x2 + y2)ς dx dy = 0. (55)

Since the two interacting eddies in our model (figure 1b) are identical, their
contributions to the total angular momentum are equal and therefore (55) can be
applied to each eddy separately. Equation (55) further simplifies for vortices that are

sufficiently separated from each other ρ0 =
√

X2
0 + Y 2

0 � 1 (i.e. long before or long
after the collision). In this case the angular momentum reduces, at the leading order
in ρ−1

0 , to

I =

∫∫
1

2
(x2 + y2)ς dx dy ≈ X0

∫∫
xς dxdy + Y0

∫∫
xς dxdy

= ρ0(Qx cos γ + Qy sin γ ). (56)

In polar coordinates (ρ, γ ), such that ρ =
√

x2 + y2 and γ = arg(x + iy), the
combination Qρ =Qx cos γ + Qy sin γ in (56) represents the radial component of
the dipolar moment. Recalling that the eddy dipolar moment is directly related to
its propagation velocity (§ 2), we express the angular momentum (I ) in terms of the
eddy azimuthal velocity component (Vγ ) and its separation from the origin of the
coordinate system (ρ0):

I = −2πρ0Vγ . (57)

Since I is an invariant, as is the absolute value of the total velocity, we conclude that
the vortex collisions tend to preserve the azimuthal component of the propagation
velocity Vγ (ρ0) but reverse its radial component, which rationalizes the observed
symmetry of the refraction of colliding eddies.

6. Conclusions and suggestions
This study examines the long-range interactions and direct collisions of two shielded

vortices using numerical calculations and weakly nonlinear theory.
Because of the assumption of zero net vorticity, the propagation and interaction of

vortices in our model are entirely due to their initial dipolar components. These weak
dipoles, masked by the dominant axisymmetric circulations, force the interaction
and are modified in the process. We demonstrate that the direct eddy collisions

† The total energy of the propagating eddies consists of two major components – the energy
associated with the axisymmetric rotation and the energy of self-propagation. If the total energy is
preserved, and if the rotational energy, which in our model is determined by the vortex dimensions,
also does not change, then the energy associated with vortex propagation – hence the magnitude of
propagation velocity – has to be preserved as well.
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are characterized by a substantial exchange of fluid between the colliding vortices,
which directly affects the eddy dipolar moments and ultimately results in nearly
elastic rebounds. The nonlinear dynamics of the remote vortex–vortex interactions
are captured by the balanced asymptotic expansion about the basic state consisting
of steady circular eddies. We derive the amplitude equations for the eddy dipolar
components and use these equations to construct a low-order model of eddy evolution.
We predict, and confirm numerically, that the long-range vortex–vortex interaction
results in a permanent, albeit somewhat weak, change in the direction of eddy
propagation.

The problem of interaction of shielded eddies appears to be much more tractable
than the classical merger model, owing to the existence of a simple basic steady state
in our case. Therefore, the broader significance of the proposed theoretical approach
lies in the possibility of applying it to other remote interaction problems, including the
interaction of shielded eddies with distant boundaries, topography, and currents. We
are particularly optimistic with regard to the prospects of analytical explorations of
the asymmetric configurations, consisting of two unequal sized vortices, and stratified
vortex–vortex interactions.

Another line of inquiry which, so far, has been explored only to a limited extent
(Carton 1992; Beckers et al. 2002), is related to a proposition that oceanic eddies
are not shielded completely. Our present study and the classical merger models can
be thought of as two extremes of the interaction problem – we emphasize the self-
propagation and ignore the exterior circulation; the merger models do the opposite.
It would be of interest to include both effects in a single framework and examine their
cumulative effect. For instance, none of our simulations resulted in vortex mergers,
whereas such phenomena are fairly common in the ocean (Cresswell 1982; Yasuda,
Okuda & Hirai 1992; Flament et al. 2001). What is the critical merger-inducing
ingredient that is missing in our idealized model? Dritschel (1986) examined a wide
range of uniform distributions of vorticity, arriving at the general conclusion that
the transition from one equilibrium state to another is induced by the instabilities
and controlled by the integral invariants of the two states (energy and angular
momentum). Both stability characteristics and global invariants are different for
shielded and unshielded vortex configurations. Thus, while the merger dynamics is
beyond the scope of our study, we speculate that the small but non-zero far-field
circulation in the oceanic eddies could be a reason for the observed mergers.

The author thanks Frank Giraldo, Tim Janssen, and reviewers for helpful comments.
Support of the National Science Foundation (grant OCE 0623524) is gratefully
acknowledged.

Appendix A. Numerical experiments with vortices of different sizes
In order to ensure that the central example considered in this paper – the interaction

of two identical vortices – captures some of the dynamics of the asymmetric
interactions, we now present the numerical experiments with vortices of different
size.

The first experiment (figure 9b) was initialized with two shielded circular vortices.
The radius of the yellow vortex equals unity, and the radius of the red vortex is
one half. Both distributed vortices have the same (unit) vorticity values, and the
compensating point vortices were placed at

(X0, Y0) = (3, 1), (X∗
0, Y

∗
0 ) = (−3, −1). (A 1)
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Figure 9. Numerical experiments with vortices of different size: (a) shows colliding vortice
and (b) non-colliding. The regions of distributed vorticity are shown in red and yellow, and
the blue curves represent trajectories of the point vortices. Note the permanent change in the
direction of motion caused by the remote interaction of non-colliding eddies and the nearly
elastic rebound accompanied by the exchange of fluid between the colliding eddies.
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The centres of the vorticity contours were slightly displaced with respect to (A1) as
follows:

XC = X0, YC = Y0 − 0.05,

X∗
C = X∗

0, Y ∗
C = Y ∗

0 + 0.05.

}
(A 2)

As discussed in § 2, this small y-displacement introduces a dipolar moment which
propels vortices in the x-direction. This initial configuration enables the vortices
to pass each other without collision. The evolutionary pattern of this system is
qualitatively similar to the experiments with two identical vortices (figure 2). The
first stage represents the rectilinear motion of vortices – the vortices exert only a
slight influence on their partner and the trajectories are almost straight (see the
configuration realized at t = 50 in figure 9a). This pattern of motion changes when
the eddies come into close proximity. Their trajectories become visibly deflected: first,
eddies make gentle right turns (t = 100) and then, after passing their partner, turn
left (t =150). The vortices do not recover their initial orientation, and the net effect
of their weak encounter is to produce a finite y-velocity component – the component
which was absent initially. As a result, the vortices scatter at a finite angle relative
to their original direction of motion. The smaller vortex is deflected more than the
larger one.

In the second experiment (figure 9a), the compensating point vortices were placed
at

(X0, Y0) = (3, 0.5),

(X∗
0, Y

∗
0 ) = (−3, −0.5).

}
(A 3)

and their centres were displaced according to (A2). This initial orientation results in
the direct collision of the propagating vortices. One again, the evolution of vortices is
consistent with the strong interaction scenario, previously illustrated in figure 7. We
note the nearly elastic rebound of vortices after the collision, which is accompanied
by a substantial exchange of fluid.

The foregoing experiments are presented here only as preliminary evidence
suggesting that the qualitative conclusions, reached by considering a special case
of two identical vortices, may be sufficiently general. The problem of the asymmetric
interaction is characterized by a much wider parameter space and holds the promise
of rich dynamics. Thus, we propose that the vortex theory would benefit from future
systematic explorations, numerical and analytical, of the asymmetric shielded eddy–
eddy interactions.

Appendix B. Linear stability analysis for a system of two isolated vortices
Linear stability of the axisymmetric isolated vortex has been explored in detail by

Michalke & Timme (1967) and by Flierl (1988). In these models, the circular inner
core of uniform vorticity was surrounded by a compensating annulus of different (but
also uniform) vorticity, with no circulation outside the eddy. It was demonstrated
that the barotropic vortex (Michalke & Timme 1967) is linearly stable as long as the
annulus is sufficiently wide: the radius of the inner contour is less than the half-radius
of the outer contour. This result implies that eddies used in our model – the point
anticyclonic vortex in a circular cyclonic vorticity patch – are individually stable. It
remains to be determined whether the two-vortex configurations are stable as well.
For that, the displacement of the vorticity interface of the first vortex R = 1 + 	R(θ)
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is decomposed into Fourier harmonics:

	R(θ) =

∞∑
m=1

Am cos(mθ) + Bm sin(mθ). (B 1)

As previously, the interacting vortices are symmetric, as implied in (22).
We now linearize the governing equations with respect to (Am, Bm) � 1, in which

case the kinematic condition (24) reduces to

∂R

∂t
= U cos θ + V sin θ (B 2)

where V (θ) = (U, V )are the material velocities of particles at the boundary of the
distributed vorticity patch relative to the point vortex. The linearization of the
velocity equations (§ 3.1) is written as follows:

U ≈ LU (	R), V ≈ LV (	R), (B 3)

where LU and LV are the linear operators acting on the perturbation of the vorticity
contour relative to the unit circle. The linear response (LUm, LV m) is computed for
each Fourier harmonic in (B1): for m =1 we obtain

LU1 = −A1 sin(2θ)

2
+

B1 cos(2θ)

2
− B1

2
+

A1 sin θ + B1 cos θ

l3
,

LV 1 =
A1 cos(2θ)

2
+

A1

2
+

B1 sin(2θ)

2
+

A1 cos θ − B1 sin θ

l3
,

⎫⎪⎬
⎪⎭ (B 4)

whereas for m > 1

LUm = −Am

2
sin(mθ + θ) +

Bm

2
cos(mθ + θ),

LV m =
Am

2
cos(mθ + θ) +

Bm

2
sin(mθ + θ).

⎫⎪⎬
⎪⎭ (B 5)

The linear velocity operators LU and LV are combined into a single operator for
the contour displacement LR using (B2), and the following linear response for each
Fourier harmonic is obtained:

LRm =
A1 sin(2θ) + B1 cos(2θ)

l3
for m = 1,

LRm = −Am

2
sin(mθ) +

Bm

2
cos(mθ) for m > 1.

⎫⎪⎬
⎪⎭ (B 6)

Note that the linear operator LR does not produce the first Fourier harmonic – the
eddy dipolar component. This feature is a key element of the nonlinear theory in § 3:
the inability of the linear operator to generate the m =1 harmonic was exploited in
formulating a solvability condition at the second (nonlinear) order of expansion.

In terms of (Am, Bm), the evolutionary equation (B2) becomes

∂A1

∂t
= 0,

∂B1

∂t
= 0,

∂A2

∂t
=

B1

l3
+

B2

2
,

∂B2

∂t
=

A1

l3
− A2

2
,

∂Am

∂t
=

Bm

2
,

∂Bm

∂t
= −Am

2
for m > 2,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B 7)
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which we write in the matrix form by introducing the complex Fourier amplitudes
Cm =Am + iBm. Defining a state vector

Z =

⎛
⎜⎜⎜⎜⎜⎝

A1

B1

C2

C3

. . .

Cn

⎞
⎟⎟⎟⎟⎟⎠ , (B 8)

reduces (B7) to

∂

∂t
Z = M · Z, (B 9)

where

M =

⎛
⎜⎜⎜⎝

0 0 0 0 . . .

0 0 0 0 . . .

il−3 l−3 −i/2 0 . . .

0 0 0 −i/2 . . .

. . .

⎞
⎟⎟⎟⎠ . (B 10)

This matrix has two eigenvalues: λ= −i/2, corresponding to the angular rotation
of m > 1 modes, and λ=0 of the degenerate dipolar (m = 1) mode. Since neither of
those reflects the exponential growth of perturbations, we conclude that the two-vortex
configuration is linearly stable.
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